

CII – 23rd National Award for "Excellence In Energy Management - 2022"

1. Brief introduction on Company/Unit

BEBOLD | OWN 1 | SOLVE TO DE HET, BEEM STRETC

TATA MOTORS Connecting Aspirations

<u>1. Brief introduction on Company/Unit</u>

Our Products

TATA MOTORS Connecting Aspirations

4

<u>1. Brief introduction on Company/Unit</u>

2. Energy Consumption Overview

BEBOLD | OWN 1 | SOLVE TO DE HET, BEEM STRETC

Overall Energy Consumption and Production Data FY2018 - 2021

2. Energy Consumption Overview

TATA Motors Ltd., CVBU, Pune

TATA MOTORS Connecting Aspirations

2. Energy Consumption Overview

TATA Motors Ltd., CVBU, Pune

3. Specific Energy Consumption in Last 3 Years - Thermal

TATA Motors Ltd., CVBU, Pune

3. Specific Energy Consumption in Last 3 Years - Thermal

TATA Motors Ltd., CVBU, Pune

4.0 BENCHMARKING

4. Information on Competitors, National & Global Benchmark

4. Information on Competitors, National & Global Benchmark

TATA Motors Ltd., CVBU, Pune

Global Benchmark

TATA Motors CVBU Pune Energy performance is better than its Global competitors but still we would like to highlight the following aspects

- Apple to apple comparison is very difficult to compare
- Manufacturing models are different, eg. In CVBU Pune, we are having all manufacturing processes.
- Climatic conditions varies

4. Information on Competitors, National & Global Benchmark

Roadmap to achieve Benchmark / Global Best :-

TATA Motors CVBU Pune Plant will continue to refine all process to achieve Benchmark Level.

To Sustain the Best Achieved Level :-

We are following robust process of assessment of performance vis-à-vis comparative information / benchmark from different organisation and standards.

Roadmap :-

- □ Intelligent management-Optimise and effective use of Resources
- □ IOT / Machine management Adapt Latest Technology
- □ Lean manufacturing and Processes Management Innovations
- Clean resources Maximise Renewable Energy
- GHG Management Reduce Carbon Footprint
- **G** Real-time Monitoring and analysis

Roadmap						
 Realign the Processes Continual process improvement 	 ECO (Machines IDLE run optimization) CNC / Robotic Technology RTPFC – Unity PF IoT – industry 4.0 	 Sensor Technology Process Optimization Energy Bank Concept 	 22MW captive Wind Power + Additional wind 18 MW & Solar 17MWp Third Party Purchase. 4.5 MW Rooftop Solar Power 			
• Improve to the MOP (measurement of Performance) up to 400	 HVLS Fans Room temp washing Day light utilization technology. 	Conversion of LDO to NG for Pretreatment	•80 % Achieved for CVBU Pune			
 Adapt Cleaner Fuel Eg. LDO to NG 	 Lighting management and standardization. 	 WHRS(Waste Heat Recovery System) in Engine Test Beds 	 Signed RE100. GHG Management - 5 Year Road Map. 			
Optimize Resources	Adapt Latest Technology	Innovations	Maximize Renewable Energy	Reduce Carbon Footprint		

TATA Motors Ltd., CVBU, Pune

Summary of Project Implemented in Last Three Years						
Year	No of Proposals	Investments (Rs. Million)	Savings (Rs. Million)	Payback Months		
2019-20	14	12.8	28.9	5		
2020-21	20	12.4	32.5	5		
2021-22	23	5.492	17.25	4		
Total	57	30.692	78.65	5		

TATA Motors Ltd., CVBU, Pune

CII- National Award for "Excellence in Energy Management-2022"

18

SEBOLUTOWNE ISOLVE TO 25 HERE SEEM STREETO

6.Innovations

TATA Motors Ltd., CVBU, Pune CII- National Award for "Excellence in Energy Management-2022"

20

6. Innovation 1 – Heat Treatment Furnace Analytics

Project Overview: Reduction of energy consumption of Heat treatment using online real-time energy monitoring and analytics.

Brief Outline of the Project:

- Micro level monitoring :
 - Equipment level energy loss identification.
 - Overall Equipment Efficiency (OEE).
 - Full load vs ideal consumption.
 - Specific power consumption per kg part produced.
- Alarms for critical events and equipment running status.
- Regression related analytics for prediction of energy consumption w.r.t production plan.

6. Innovation 1 – Heat Treatment Furnace Analytics

-ROAD MAP-DIGITIZATION

The digitization planned in three phases:

- Phase 1: Preparing machines/Equipment for providing necessary data.
- > Phase 2: Data Monitoring : Connecting machines to server and storing the data in the Data Server.
- Phase 3: Data Analytics further Linkage to Production Planning and Control.

Prioritization of Area / Categories where it can be implemented:

Plant wise selection of Category :

- Process wise category: Heat treatment, Painting, Machining and Assembly.
- Substation Level and Distribution Level (LTDB Panel).
- > Equipment Level (Parameters Monitoring and Analysis i.e. EnMS, OEE, Productivity etc.)

Plant wise cost / impact analysis.

- VCC Energy Monitoring and Analysis.
- Equipment Operation Maintenance Cost Analysis

TATA Motors Ltd., CVBU, Pune

<u>6. Innovation 1 – Heat Treatment Furnace Analytics</u>

– Project Planning and Execution

POC : CCHF04 Project Details:

Area Selection:

CCHF04 Furnace is significant Equipment in Heat treatment area and Running 24/7.

Vendor Selection:

- Approach 2 to 3 Vendors and Selected M/S TATA POWER as a integrator.
 Project Duration:
- > 10 Months (March 2021 to Dec 2021).

Project Planning and Scheduling Activities:

During initial phase i.e. in the month of March, April and May 2021. team faces challenges of Covid 19 so actual work is started in last week of May 2021.

- > Phase wise implementation done for hardware part and software integration part w/o hampering Production.
- Sample analytics window development done and team deliberated for further changes.
- Proto Type is made ready for monitoring and data generation point of view.
- User expectation and experience suggestions provided for further fine tuning of analytics.

TATA MOTORS Connecting Aspirations

6. Innovation 1 – Heat Treatment Furnace Analytics

CII

TATA Motors Ltd., CVBU, Pune

6. Innovation 1 – Heat Treatment Furnace Analytics

<u>6. Innovation 1 – Heat Treatment Furnace Analytics</u>

6. Innovation 1 – Heat Treatment Furnace Analytics

TATA Motors Ltd., CVBU, Pune

<u>6. Innovation 1 – Heat Treatment Furnace Analytics</u>

Live KWH Tracker

TATA Motors Ltd., CVBU, Pune

6. Innovation 1 – Heat Treatment Furnace Analytics

- Live Analytics Das	h Board Glimpses CCHF ()4	
CVBU TML Pune	e / CCHF4 - CVBU Furnace Section, TML Pune	-	7 🕑 🖵 < 🛛 Sep 14, 2021 18:30:00 to Sep
		Fill in the Data Below	/
	dd-mm-2021:	Use Current Time	💷 Use Empty Tray
	Furnace Condition:	Furnace c	
	Tray Cycle Duration:	30 mins 🔹	Data Entry Window
	Reason for Loss:	None •	
	Component Name	Weight(grams)	Production Quantity
	S/S - 2/3 (shifter sleeve GB27)	540	QTY
	S/S - 1/R (shifter sleeve GB27)	505	QTY
	Synchro ring 3rd GB27 - SY/R	310	QTY
MOREWHEN	TATA Mo	tors Ltd., CVBU, Pune	

6. Innovation 1 – Heat Treatment Furnace Analytics

– PROPOSED BENEFIT & WAY FORWARD

Tangential Benefits:

- Reduction in Specific
 Power Consumption
 Kwh/kg.
- Loss optimization (idle equipment running).
- Enhancement in OEE in %.
- Zone wise absolutePower Consumption.
- Cost management tool.

In-tangential Benefits:

- Predictive performance of Furnace.
- Reduction in GHGEmission.
- Breakdown tracking.
- Production Planning as per material availability.

Way Forward

- Integration with Production Planning IPMS System.
- > Horizontal deployment for other furnaces.
- Process Parameter integration in existing IOT.
- ➢ Line efficiency as Per OLE guide Line.
- Predictive detailed Analytics.
- Can be integrate to other process like Painting, Assembly and Machining.

TATA MOTORS Connecting Aspirations

6. Innovation 2 – Energy Mix – Cost Optimization at Tata Motors

Energy Mix Cost Optimization at Tata Motors

6. Innovation 2 – Energy Mix – Cost Optimization at Tata Motors

6. Innovation 2 – Energy Mix – Cost Optimization at Tata Motors

-Objectives

TATA Motors Ltd., CVBU, Pune

6. Innovation 2 – Energy Mix – Cost Optimization at Tata Motors

BEBOLD | OWN 1 | SOLVE TO DE HET, BEEM STRETC

36

CV Pune : Improvement Projects 1: J11 /J12 Paint Shop Kaizen

Focus Area: J11 Paint Shop

Scope:

Fuel(CNG) consumption reduction and cost reduction by process optimization

Highlights of Improvements:

- **PTCED oven temperature** optimised from **188 to 183 C** in keep up zone with TTR confirmation and Product and Process Quality confirmation
- Sealant oven temp optimised from 160 to 140 C with Process and Product Quality confirmation.

Before KAIZEN

BEBOLD | OWN 1 | SOLVE TO DE HET BEEM WITHE TO

CII

Results Achieved:				
Parameters	Before KAIZEN- Avg. Jun	Target	After KAIZEN Avg. Jul	% Improved
CNG consumption in SCM/Eq. Veh	140.2	124.6	122.67	12.5 % Reduction
CNG Consumption in SCM/PTCED Cycle	22.3	20.3	20.3	9 % Reduction
CNG Consumption in SCM/Total cycle	9.6	8.4	8.4	12.5 % Reduced

After KAIZEN

TATA Motors Ltd., CVBU, Pune

- PTCED Line :- Hot water generator and CED Oven

Before

- 1) Hot water generator Setting :- 120 Degree
- 2) CED Oven Keep up Temperature **188 Degree** centigrade

System	Consumption M3/Hr	Consumption M3/Hr	Saving in M3/Hr	Saving in SCM/Hr
PT-HWG	33.2	29.68	3.54	9.19
CED Oven	47.10	42.95	4.15	10.78
Sealer Oven	26.12	19.28	6.84	17.76
Total	106.4	91.91	14.53	37.73

After

- 1) HWG Return temperature optimised from **120 to 115**
- 2) CED oven TTR Optimised .
- 3) CED Oven Keep up zone temperature reduced from 188 to

183.

Saving :-

- 304 SCM /Day .
- Saving in Rs. Lakhs :- 29.87 Lakhs (Considering Avg Rate of 42 Rs/SCM).
- Implemented Month : July 2021

- Project : Sealant Oven

Before

- 1) Sealant oven earlier Temp was 160 Degrees centigrade.
- 1) Sealant oven baking window was 120 degree 10 Min.

Kaizen Major	Kaizen Major Activity Result Analysis Summary - July-2021					
System	Before Consumption M3/Hr	After Consumption M3/Hr	Saving in M3/Hr	Saving in SCM/Hr		
PT-HWG	33.2	29.68	3.54	9.19		
CED Oven	47.10	42.95	4.15	10.78		
Sealer Oven	26.12	19.28	6.84	17.76		
Total	106.4	91.91	14.53	37.73		

After

- 1) Sealant oven temperature reduced from 160 to 140 degree centigrade during Kaizen activity considering existing models .
- 2) Baking window optimised to 110 degree for 10 min.
- 3) All models sealant beads Pregl baking condition checked.
- 4) All models underbody Prejel baking condition checked.

Saving :- 256 SCM /Day .

Saving in Rs. Lakhs :- 25.16 Lakhs (Considering Avg. Rate of 42 Rs/SCM)

Implemented :- July 2021

CII- National Award for "Excellence in Energy Management-2022"

TATA Motors Ltd., CVBU, Pune

– Kaizen Benefits

Sr.NO	Project	Saving Per Day SCM
1	PTCED Oven Temp optimization.	304 scm/day
2	Silent Oven Temp optimization	256 scm/day
Total	Total saving by Kaizen activity (10%)	560 scm/Day

7. Energy Saving Projects

- Energy Saving For Pre Honing Washing Machine

Recirculation pump for pre honing washing machine were continuously ON.

Calculation for 1 machine

ENERGY CONSUMTION BEFORE	ENERGY CONSUMTION AFTER	NET ENERGY SAVING/DAY/MACHINE	ENERGY SAVING/MONTH/MACHINE (25 WORKING DAYS)	ENERGY SAVING/YEAR/MACHINE	ENERGY TARRIF	SAVING IN RS/MACHINE/YEAR
131 KWH	51 KWH	80 KWH	2000 KWH	24000 KWH	Rs 8	Rs 1,92,000

-LED BATTEN XENON/LCV (1100 Nos)

	Exestir	ng Lighting			
	Qty	Kwh/Day	Kwh/Year		
Twin 56 watt	275	154	46970		
T5 216 watt	227	490	149547.6		
Urja 144 watt	207	298	90914.4		
Total	709	942	287432		
F	Praposed I	Batten Lighting			
	Qty	Kwh/Day	Kwh/Year		
Batten 36		396			
watt	1100		120780		
Total	1100	396	120780		
		Kwh Saving	166652		
		GHG			
		KGco2/EqVeh	0.69		

KgCo2/EqVeh Actual

KgCo2/EqVeh Planned

Installation Glimpses

-ELECTRICAL TO NG CONVERSION AT H7 CRANKSHAFT WASHING MACHINE

- Opportunity
- H7 Crankshaft washing machine running on electrical heating with per day consumption of 180 kwh/Day.

In-house NG Conversion completed in July21.

- Action
- Conversion of H7 Crank shaft washing machine Electrical to NG by using in-house material.

Parameter	Electrical Heating	NG Heating	
Fuel	Electricity	Natural Gas	
Per day Consumption	180 kwh/Day	20 SCM/Day	
Per Year Consumption	54900 kwh	6100 SCM	
Cost of fuel	9.3 Rs/Kwh	38 Rs/SCM	
Per Year Operation Cost	5.10 Lakh	2.31 lakh	
Rs Saving Per Year	2.79 lakh		
GHG Emmision Tco2e	45.567	12.48	
GHG Scope 2 Reduction Tco2e	33.087		

- Total Kwh saving per Year- 54900 kwh/Year
- Total Scope 2 GHG Tco2 (Electrical)-45.56
- Total Scope 1 GHG Tco2 (NG)-12.48
- Total GHG Reduction (Scope 2 Scope 1) 33.08

<u>8. Utilization of Renewable Energy Sources</u>

Renewable Energy

8. Utilization of Renewable Energy Sources

Type of Energy	Onsite/ Offsite	Installed Capacity (MW)	Generation (million kWh)	% of overall electrical energy
Electrical	Offsite	21.95MW + 18 MW + 17MWp	35.55	71.53 %
Electrical	Onsite	4.8 MWp	4.42	8.89 %
Type of Energy	Onsite/ Offsi	te Installed Capacity	Usage (million kCal)	% of overall thermal energy
Thermal	Onsite	36,250 LPD	463	2.06 %
	Type of EnergyElectricalElectricalType of EnergyThermal	Type of EnergyOnsite/ OffsiteElectricalOffsiteElectricalOnsiteType of EnergyOnsite/ OffsiteThermalOnsite	Type of Energy OffsiteOnsite/ OffsiteInstalled Capacity (MW)ElectricalOffsite21.95MW + 18 MW + 17MWpElectricalOnsite4.8 MWpType of EnergyOnsite/ OffsiteInstalled CapacityThermalOnsite36,250 LPD	Type of Energy OffsiteOnsite/ OffsiteInstalled Capacity (MW) (million kWh)Generation

TATA Motors Ltd., CVBU, Pune

8. Utilization of Renewable Energy Sources

TATA Motors Ltd., CVBU, Pune

9. Waste Utilization and Management

		2019-2020	2020-2021	2021-2022	
Νο	Type of waste generated	Quantity of waste generated (MT/year)	Quantity of waste generated (MT/year)	Quantity of waste generated (MT/year)	Disposal method
1	Grinding sludge	116.485	87.83	109.10	Landfill after treatment
2	Phosphating sludge	32.870	13.14	24.83	Landfill after treatment
3	Paint sludge hazardous kachara	316.840	234.55	265.35	Incineration
4	Waste oily Scum	3.760	15.14	32.08	Incineration
5	Spent Resin	1.520	0.86	0.35	Incineration
6	Asbestos	0.024	5.75	5.52	Landfill
7	Glass wool	1.410	0.75	1.96	Landfill
8	Chimney soot	0	0.33	0.00	Incineration
9	FRP Waste	4.230	0.72	1.26	Landfill
10	Shot blasting dust	15.960	7.94	6.90	Landfill after treatment

TATA Motors Ltd., CVBU, Pune

9. <u>Waste Utilization and Management</u>

		2019-2020	2020-2021	2021-2022	
No	Type of waste generated	Quantity of waste generated (MT/year)	Quantity of waste generated (MT/year)	Quantity of waste generated (MT/year)	Disposal method
11	ETP-Industrial sludge	133.290	355.95	862.84	Landfill after treatment Through Authorised MPCB
12	ETP-Domestic sludge	2.500	10.02	13.70	Landfill after
					treatment
13	Nickel + Al catalyst	0	0.38	0.9	Landfill
14	ERC pattern waste	31.140	14.82	10.16	Incineration
15	HFO sludge	0	0	0	Incineration
16	Door, Roof liner	15.040	4.8	3.58	Landfill
17	Broken Tube lights	1.020	0.99	1.12	Landfill after
	-				treatment
18	Paint sludge - MPCB Regd. Re-cycler	44.834	61.91	50.06	Recycle
19	Paint sludge - MPCB Regd. Re-cycler	100.800	84.76	119.54	Recycle

TATA Motors Ltd., CVBU, Pune

9. <u>Waste Utilization and Management</u>

key initiatives taken for enhancing waste utilization.

1.Paint sludge converted in to usable Paints.

2.VFH (Value From Hazardous waste)

- Effective Segregation
- Elimination of waste at generation source
- Use of waste for value Creation
- Reuse and Recycle the waste

```
3.WCEP (World Class Environment Practice) – 4 Year Action plan.
```

4.Biogas Plant - Entire canteen waste is converted into biogas.

5.Compost Pit for Canteen waste treatment – (excess canteen waste if any)

6.ZLD - Zero Liquid Discharge plant - (Treated water used for garden & horticulture water demand.)

7.Solid waste Segregation

8.OCEMS – on line continuous effluent monitoring system for ETP & STP

10.Water Consumption Status

CFT formed for Water consumption reduction at plant Level.

2.5 KM Old underground headers line replaced with above ground.

IoT base Consumption monitoring is planned for individual block.

TATA Motors Ltd., CVBU, Pune

10.Water Consumption Status

TATA Motors Ltd., CVBU, Pune

10.Water Consumption Status

New Facility added for BS6 in the year 2019-20

TATA Motors Ltd., CVBU, Pune

11. GHG Inventorisation

TATA Motors Ltd., CVBU, Pune

11. GHG Inventorisation

TATA Motors Ltd., CVBU, Pune

<u>11. GHG Inventorisation :</u> Action Plan for CO₂ Emission Reduction:-

12.GREEN SUPPLY CHAIN

BEBOLD | OWN 1 | SOLVE TO DE HET, BEEM STRETC

Green Purchase Policy :-

Our Environmental Procurement Policy aims at;

- Awareness of TML Environmental Policy & TATA Code of Conduct amongst suppliers;
- Environmental performance evaluation and priority to "Green Suppliers";
- Encouraging suppliers to improve environmental performance and implement EMS;
- Reduce carbon footprint and use of hazardous substances;
- Minimize logistics and packaging material, Maximize reuse and recycling.

Supplier Evaluation :- GREEN CONSIDERATIONS IN CAPITAL EQUIPMENT PURCHASE

Step 1	Step 2
 Request For Quotation Supplier submits following information for the proposed solutions Power Consumption Fuel consumption Air consumption Consumables required Green features : Hibernation mode if machine is non-operational Provision for monitoring of Power consumption and raising alarm in case power consumption is higher than set values. Cycle time 	 Evaluation of equipment based on Green criteria Machines are compared feature to feature and if any of the feature is missing supplier is asked to include the feature and send a fresh offer. Once both the machines are at par on the feature then energy requirement, green features are compared and evaluation made.

BEBOLD TOWNE TROUVE TO DE HERE BEEN WITHER

64

TATA MOTORS Connecting Aspirations

12. Green Supply Chain Management

Supplier Evaluation/audit :-

Every year workshops on "Sustainable Supply Chain Initiative" are organized for our suppliers across locations, to create awareness on the importance of sustainable value chain and to communicate our Sustainability Guidelines and Baseline data template. Till FY 2021, we have organized around 32 workshops, covering 600 plus suppliers.

Workshop @ Pune

Workshop @ Lucknow

Workshop @ Jamshedpur

Workshop @ Pantnagar

Workshop @ Pune

Workshop @ Dharwad

TATA Motors Ltd., CVBU, Pune

Sustainability Guidelines for Suppliers :-

Suppliers Evaluation/audit:-

Supplier site assessment involves verification of backup documents for data shared in baseline data template and a site round. Observations made during the assessment will be subsequently shared with supplier for closure. Based on criticality of observations, supplier will be categorized under RED, YELLOW, GREEN or BLUE band. In FY 2021, due to COVID-19 scenario, virtual assessments were carried out.

ETP @ supplier site, Sitarganj

Designated fuel storage @ supplier site, Lucknow

Safety curtains @ supplier site, Pune

TATA Motors Ltd., CVBU, Pune

Benefits Achieved :- Rooftop Solar Power Generation Plant

Solar Panels @ supplier site, Dharwad

Roof top solar supplier site, Gurgaon

Roof top solar supplier site, Pune

More Than 2MWp Roof Top Solar at Supplier END

Roof top solar @ supplier site, Pune

Roof top solar @ supplier site, Bangalore

Roof top solar @ supplier site, Pune

TATA Motors Ltd., CVBU, Pune

Learning from ISO50001: 2018

In Dec-2020, we have transition from ISO:50001:2011 version to ISO:50001:2018 version.

The ISO 50001-2018 standard helped in emphasizes the need for awareness on below aspects.

- Future energy planning.
- Risk Identification and assessment.
- Understanding needs and expectations (Internal/External Stakeholder)
- Standardize process of evaluation of legal and other requirement.
- External Issues / Internal Issues.

Summary-

One of the most valuable aspects of the energy management system is a structure that allows plant energy managers to share their challenges, successes, and concerns.

Sharing updates and best practices in an open forum provides fertile ground for identifying and leveraging opportunities especially with multiple plants in operation.

TATA MOTORS Connecting Aspirations

10. TEAM WORK

Employee Involvement

11. Team Work, Employee Involvement & Monitoring

2.Review meeting chaired by Plant Head. Hierarchy of Energy Management System

Champion (MR)	Mr Adil Bala	Chinghurd Foundary	Mr Pankaj Patil
xle Factory	Mr Balasaheb Pawar	Chinchwad Foundry	Mr Sandip Takvane
Near Fester	Mr Sanjay Dhake		
bear Factory	Mr Raju Ghadge		
	Mr Girish Kulkarni	CC & E - Electircal Pimpri	Mr Rohan Shinde
Ingine Factory	Mr Sanjay Gaikwad	CC & E - Electircal Chinchwad	Mr Vinod Yadav
	Mr Sunil Chavan	CC & E Machanical	Mr Mahindra Hingse
Press Shop Factory	Mr Pankaj Thaman		Mr Shyam Mahindrakar
Paint Shop	Mr Sachin Kasture	CC & E - ETP, WTP & HAZ. WASTE	Mr Prashant Patil
CV	Mr Yogesh Sakhare	PE	Mr Shrikant Bhide
.CV	Mr Dhananjay Shahane	ERC	Mr Mahesh Chougule
Vinger	Mr Vijaykumar Mulay	TS	Mr Asit Pandya
(enon	Mr Pankaj Joshi	Training	Mr Sushil Warang
	Mr Hementa Das		
	Mr Milind Mench		
	Mr Vivek Deshpande		

TATA Motors Ltd., CVBU, Pune

VCC : Daily Power Performance Monitoring (Kwh / Eq Veh)

72
-DWM - VCC Fuel (SCM / Eq Veh)

TATA MOTORS Connecting Aspirations

Energy Oath glimpse.

11. Team Work, Employee Involvement & Monitoring

ENERGY CONSERVATION WEEK CELEBRATION

National Energy Conservation Pledge By Plant Head, Factory Head, Functional Head and at Department and Shop Floor Level

TATA Motors Ltd., CVBU, Pune CII- National Award for "Excellence in Energy Management-2022"

TATA MOTORS Connecting Aspirations

11. Team Work, Employee Involvement & Monitoring

ENERGY CONSERVATION WEEK CELEBRATION

USS 171 Energy Conservation Suggestion Scheme Award declared during National Energy Conservation Month Celebration, 17 Dec 2021 to 20 Jan 2022.

Best Suggestion award is won By "Chinchwad Foundry" Plant head Mr. Alok Singh handed over trophy to Mr. P P Joshi and Team from Chinchwad Foundry.

Contribution Award Winner :

1st Runner Up Winner – Gear Factory
2md Runner winner – Chinchwad Foundry .
3rd Runner Up winner – Engine Factory.

Plant Head Mr. Alok Singh appreciated Mr. Ashok Siddhabhatti for taking Suggestion & KTL to Tata Group Level & National

TATA Motors Ltd., CVBU, Pune CII- National Award for "Excellence in Energy Management-2022"

11. Team Work, Employee Involvement & Monitoring - IDEA GENERATION WORKSHOPS

	Approach		Method		Design			Procedure		
 Energy Savings Idea Generation Workshop factory level & Plant Level FY 21-22. 		GEA Virtuel worl	 GEAR Methodology Virtual Idea Generation workshop. 		 Tools Developed GEAR Tool Horizontal deployment of Good practices. 			 Factory Level & Plant Level Workshop Year Mapping Plan. Confirm Adherence of each factory as per planned. Create a Database of Generated Ideas Follow up of Ideas up to R stage. 		
				Result						
	Plant & Factory Level Idea	Generation Worksh	ор							
Se No.	Factory	No. of Ideas Genera	Work	Workshop Conducted @ 10 Nos.						
1	Plant Level	14	07-Apr-21	• No. o	f Ideas G	enerated @	0 333 Nos	333 Nos.		
2	Press Factory	30	20-Apr-21	• Poter	 Potential Saving in ₹ Lakhs @ ₹487 Lakhs Total Realization YTD Mar 22 -238 Lakhs 					
3	LCV Factory	33	27-Apr-21	Fole						
4	Paintshop	88	05-May-21	• lotal						
5	Engine Factory	35	09-Jul-21					,		
6	Axle Factory	32	15-Jul-21	CVDI Dura	C	E.		D		
	Plant Level (Compressed Air)	35	29-Jul-21	CVBU PURE	0	5	А	ĸ		
7	Gear Factory	30	13-Aug-21	No. of Ideas	333	87	38	28		
7	Ocal racioly		1	1 1 10 1	1000					
7 8 9	Plant Level (Fuel)	18	17-Aug-21	Annualized Saving						
7 8 9 10	Plant Level (Fuel) Winger Factory	18 18	17-Aug-21 29-Sep-21	Annualized Saving	4.87	4.81	3.76	2.38		

CII - ONLINE COURSE ON CERTIFIED PROFESSIONAL IN ENERGY EFFICIENCY ON 29 JUNE - 01 JULY 2021

Online course on Certified Professional in ENERGY EFFICIENCY 29 June - 1 July 2021 0 4 6 55

The improvement of energy efficiency has become the most important tool for industries striving to achieve excellence in cost competitiveness. Energy cost, being one of the major components of cost of production, not only necessitates the installation of energy efficient technology but also to inculcate energy efficient practices and methods amongst the plant personnel. As a part of this, CII-Schrabij Godrej Green Business Centre (CII-Godrej GBC) is organizing a two-day Advanced Training Programme on Energy Efficiency. The faculty for the training programme will be the technical staff from CII-Godrej GBC.

Objectives of Training :

- To disseminate latest techniques and advancements in the field of energy management
- Provide information on latest energy saving ideas
- Develop participants to create innovative energy saving ideas through actual implemented case studies
- Highlight managerial skills required to sustain energy conservation activities

Target Audience

- Senior Managers Operation Engineers
- Middle Managers Energy Consultants
- Junior Managers Energy Auditors
- Maintenance Engineers Consultants, etc.

CII

Confederation of Indian Industry

Topics :

- Infroduction to Energy Management & Energy Audit methodology
- Policy & Regulatory Framework for Energy Efficiency in India
- > Energy Efficiency in Utilities
- > Energy Efficiency in Thermal Systems
- > Renewable Energy Systems
- > Energy Efficiency in Electrical Systems
- > Energy Management system
- > Energy Efficiency Financing
- Innovative and emerging technologies for Energy Efficiency
- > GHG & Climate Change
- > Role of Energy Manager
- > Energy Efficiency case studies

Nominations											
Factory	Employee Name	Ticket No.	Email ID	Contact Details	Cost Centre	Designat ion	Completion Remark				
LCV	Mr Dhanajay Shahane	224192	<u>dhananjay.shaha</u> ne@tatamotors.c <u>om</u>	860501204 5	1112382	Deputy General Manager	Completed				
ICV	Mr Santosh Londhe	177683	santosh.londhe@ tatamotors.com	992243755 7	1119318	Executiv e	Completed				
Xenon	Mr Pankaj Joshi	523229	PSJ523229@tata motors.com	727609796 7	1119328	Senior Manager	Completed				
CWD Fdy	Mr Sandip Takavane	651909	<u>sandip.takavane</u> @tatamotors.co <u>m</u>	992293048 1	1118460	Deputy General Manager	Completed				
Maval Fdy	Mr Pramod Bhage	102121	pramod.bhage@t atamotors.com	992244390 3	1118914	Senior Manager	Completed				

• Total 5 People appear for the training.

Total 5 People clear the exam after training.(Completed training successfully)

- <u>11. CII 21st National Award for Excellence in Energy Management 2021</u>

The 22nd edition of the CII National Award for Excellence in Energy Management 2021, which concluded on 27th August 2021, witnessed enthusiastic participation across our 7 plants. Three awards won by CVBU Pune

TATA Motors Ltd., CVBU, Pune

- 11. CII 21st National Award for Excellence in Energy Management 2020

Excellence in Energy Efficiency unit Award

TATA MOTORS CVBU Pune Won " CII National Award for Excellence in Energy Efficiency Unit 2020" and Prestigious " CII National Energy Leader award 2020"

CII National Energy Leader award

Cll 21st National Award for Excellence in Energy Management 2020

TATA Motors Ltd., CVBU, Pune

12. Any Other Relevant Information

Recognition / Awards

<u>2018</u>

"CII - National Award for Excellence in Energy Management Award -2018" TATA Motors Ltd., CVBU Pune Won the <u>"CII-</u> National Energy Leader Award -2018"

"CII - National Award for Excellence in Energy Management Award -2019" TATA Motors Ltd., CVBU Pune Won the "CII-National Energy Leader Award -

<u>2017</u>

TATA Motors Ltd., CVBU Pune Won the "CII-National Award for Excellence in Energy Management -2017" and declared as "Excellent Energy Efficient Unit"

"CII – Green Co Gold Rating Award -2017"

TATA Motors Ltd., CVBU Pune Won the "CII- Green Co Gold Rating Award-2017" at Green Co Summit organized by Confederation of Indian Industries at Pune.

TATA Motors Ltd., CVBU, Pune

12. Any Other Relevant Information

Recognition / Awards

"RE Excellence End User Award 2018"

TATA Motors Ltd., CVBU Pune Won the "**RE Excellence award – End User Category**" at REI summit organized by UBM group at Greater Noida.

"BEE - National Energy Conservation Award -2017"

TATA Motors CVBU Pune has been awarded the "Certificate of Merit" of National Energy Conservation Award 2017, in Automobile Manufacturing category by Bureau of Energy Efficiency (BEE), Ministry of Power, Government of India.

"Golden Peacock Award for Energy Efficiency -2017"

TATA MOTORS CVBU PUNE Won the "Golden Peacock Award for Energy Efficiency" in "19th World Congress on ENVIRONMENT MANAGEMENT", On 7th July, 2017 in Hyderabad.

TATA Motors Ltd., CVBU, Pune

TATA MOTORS Connecting Aspirations

13. Long Term Vision on EE

TATA Motors Ltd., CVBU, Pune CII- National Award for "Excellence in Energy Management-2022"

Long Term Vision on EE - Energy Efficiency:-

TATA Motors CVBU Pune Plant follows the ISO:50001 Energy Management System and will continue to refine all process to improve the Energy Efficiency.

We are following robust process of assessment of performance vis-à-vis comparative information / benchmark from different organisation and standards for.

- Optimise Resources
- □ Adapt Latest Technology
- Innovations
- □ Maximise Renewable Energy
- □ Science Base Target to Reduce Carbon Footprint

THANK YOU

TATA Motors Ltd., CVBU, Pune